Codon Preference Optimization Increases Heterologous PEDF Expression
نویسندگان
چکیده
منابع مشابه
Codon Preference Optimization Increases Heterologous PEDF Expression
Pigment epithelium-derived factor (PEDF) is widely known for its neurotrophic and antiangiogenic functions. Efficacy studies of PEDF in animal models are limited because of poor heterologous protein yields. Here, we redesigned the human PEDF gene to preferentially match codon frequencies of E coli without altering the amino acid sequence. Following de novo synthesis, codon optimized PEDF (coPED...
متن کاملCodon Preference Optimization Increases Prokaryotic Cystatin C Expression
Gene expression is closely related to optimal vector-host system pairing in many prokaryotes. Redesign of the human cystatin C (cysC) gene using the preferred codons of the prokaryotic system may significantly increase cysC expression in Escherichia coli (E. coli). Specifically, cysC expression may be increased by removing unstable sequences and optimizing GC content. According to E. coli expre...
متن کاملCodon bias and heterologous protein expression.
The expression of functional proteins in heterologous hosts is a cornerstone of modern biotechnology. Unfortunately, proteins are often difficult to express outside their original context. They might contain codons that are rarely used in the desired host, come from organisms that use non-canonical code or contain expression-limiting regulatory elements within their coding sequence. Improvement...
متن کاملOptimizing heterologous expression in dictyostelium: importance of 5' codon adaptation.
Expression of heterologous proteins in Dictyostelium discoideum presents unique research opportunities, such as the functional analysis of complex human glycoproteins after random mutagenesis. In one study, human chorionic gonadotropin (hCG) and human follicle stimulating hormone were expressed in Dictyostelium. During the course of these experiments, we also investigated the role of codon usag...
متن کاملAn extreme codon preference strategy: codon reassignment.
We argue that in animal mitochondria codon reassignments, such as those for AGA and AGG from arginine to serine or of AUA from isoleucine to methionine, are the result of an interplay between biased mutational forces and selective ones. In particular, there is a marked tendency for animal mitochondria to have very small genomes and to minimize their investment in components required for gene ex...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: PLoS ONE
سال: 2010
ISSN: 1932-6203
DOI: 10.1371/journal.pone.0015056